Annual Drinking Water Quality Report #### TX0840044 ### **BOLIVAR PENINSULA SPECIAL UTILITY DISTRICT** | Annual Water Quality Report for the period of January 1 to December 31, 2016 | For more information regarding this report contact: | |---|--| | This report is intended to provide you with important information about your drin king water and the efforts made by the water system to provide safe drinking water. | Name Clifford Howard | | | Phone 409-684-3515 | | | Este reporte incluye información importante sobre el agua para tomar | BOLIVAR PENINSULA SPECIAL UTILITY DISTRICT is Purchased Surface Water Para asistencia en español, favor de llamar al teletono (409) 684-3515 A public hearing to address our CCR will be held before our regular scheduled Board meeting on August 8, 2017 at 5:00pm at our District office located at 1840 Hwy 87, Crystal Beach, Texas 77650 # **Sources of Drinking Water** The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. #### **Information about Source Water Assessments** A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies. For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc= Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww.tceq.texas.gov/DWW Source Water Name Type of Water Report Status Location SW FROM LOWER NECHES VALLEY CC FROM TX0360112 LOWER SW A Winnie, Texas #### **Water Loss** In the water loss audit submitted to the Texas Water Development Board for the period of January 1 – December 31, 2016 our system lost an estimated 5,657,278 gallons of pumped water. If you have any questions about the water loss audit please call 409-684-3515. ### **Lead and Copper** Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|---| | Copper | 2016 | 1.3 | 1.3 | 0.0729 | 0 | ppm | | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | | Lead | 2016 | 0 | 15 | 3 | 1 | ppb | | Corrosion of household plumbing systems;
Erosion of natural deposits. | ### 2016 Regulated Contaminants Detected ### **Water Quality Test Results** Definitions: The following tables contain scientific terms and measures, some of which may require explanation. Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment t echnology. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been fou nd in our water system. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of micro bial contaminants. Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disi nfectants to control microbial contaminants. MFL million fibers per liter (a measure of asbestos) na: not applicable. mrem: millirems per year (a measure of radiation absorbed by the body) NTU nephelometric turbidity units (a measure of turbidity) pCi/L picocuries per liter (a measure of radioactivity) ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water. ppt parts per trillion, or nanograms per liter (ng/L) ppq parts per quadrillion, or picograms per liter (pg/L) # **Coliform Bacteria** During the period from January 1 – December 31, 2016 the District had no positive bacterial samples. | Maximum Contaminant
Level Goal | Total Coliform Maximum
Contaminant Level | Highest No. of
Positive | Fecal Coliform or E. Coli Maximum
Contaminant Level | Total No. of Positive E. Coli
Fecal Coliform Samples | Violation | Likely Source of Contamination | |-----------------------------------|---|----------------------------|--|---|-----------|---------------------------------------| | 0 | 1 positive monthly sample | 0 | | 0 | N | Naturally present in the environment. | # Disinfectant | Disinfectant | Year | Average Level | Minimum Level | Maximum Level | MRDL | MRDLG | Unit of Measure | Violation (Y/N) | Likely Source of Contamination | |--------------|------|---------------|---------------|---------------|------|-------|-----------------|-----------------|--| | Chloramines | 2016 | 2.08 | 0.04 | 4.16 | 4 | 4 | ppm | N | Water additive used to control microbes. | # **Regulated Contaminants** | Disinfectants and Disinfection
By-Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |---|--------------------|---------------------------|-----------------------------|-----------------------|-----|-------|-----------|--| | Haloacetic Acids (HAA5) | 2016 | 40 | 19.5 - 57.7 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | Total Trihalomethanes (TTHM) | 2016 | 54 | 30.5 - 71.3 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | | Inorganic Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Asbestos | 01/03/2012 | 0.1952 | 0.1952 - 0.1952 | 7 | 7 | MFL | N | Decay of asbestos cement water mains; Erosion of natural deposits. | | Nitrate [measured as Nitrogen] | 2016 | 0.15 | 0.12 - 0.15 | 10 | 10 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | Nitrite [measured as Nitrogen] | 09/23/2015 | 0.04 | 0.04 - 0.04 | 1 | 1 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | # **Regulated Contaminants LNVA** | Disinfectants and Disinfection By-Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCLG MCL | | Violation | Likely Source of Contamination | |--|--------------------|---------------------------|-----------------------------|-----------------------|------------|-------|-----------|--| | Haloacetic Acids (HAA5) | 2016 | 38 | 12.6 - 53.5 | No goal for the total | otal 60 pp | | N | By-product of drinking water disinfection. | | Total Trihalomethanes (TTHM) | 2016 | 61 | 24.5 - 79.1 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | | Inorganic Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Barium | 2016 | 0.0453 | 0.0453 - 0.0453 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | Nitrate [measured as Nitrogen] | 2016 | 0.08 | 0.08 - 0.08 | 10 | 10 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | Nitrite [measured as Nitrogen] | 07/24/2013 | 0.01 | 0.01 - 0.01 | 1 | 1 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | Radioactive Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Combined Radium 226/228 | 01/11/2011 | 1 | 1 - 1 | 0 | 5 | pCi/L | N | Erosion of natural deposits. | | Synthetic organic contaminants including pesticides and herbicides | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Di (2-ethylhexyl) phthalate | 2016 | 2 | 0 - 1.8 | 0 | 6 | ppb | N | Discharge from rubber and chemical factories. | # **Turbidity** | | Limit (Treatment Technique) | Level Detected | Violation | Likely Source of Contamination | |--------------------------------|-----------------------------|----------------|-----------|--------------------------------| | Highest single measurement | 1 NTU | 0.15 NTU | N | Soil runoff | | Lowest monthly % meeting limit | 0.3 NTU | 100% | N | Soil runoff | Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtrate ## **Violations Table** ## Lead and Copper Rule The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials. | Violation Type | Violation Begin | Violation End | Violation Explanation | |------------------------------------|-----------------|---------------|--| | FOLLOW-UP OR ROUTINE TAP M/R (LCR) | 10/01/2016 | 2016 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | INITIAL TAP SAMPLING (LCR) | 07/01/2010 | 2016 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | INITIAL TAP SAMPLING (LCR) | 01/01/2011 | 2016 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | INITIAL TAP SAMPLING (LCR) | 07/01/2011 | 2016 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | INITIAL TAP SAMPLING (LCR) | 01/01/2012 | 2016 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | LEAD CONSUMER NOTICE (LCR) | 12/30/2013 | 12/05/2016 | We failed to provide the results of lead tap water monitoring to the consumers at the location water was tested. These were supposed to be provided no later than 30 days after learning the results. |